Searching over 5,500,000 cases.


searching
Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.

Oakland Heritage Alliance v. City of Oakland

May 19, 2011

OAKLAND HERITAGE ALLIANCE, PLAINTIFF AND APPELLANT,
v.
CITY OF OAKLAND, DEFENDANT AND RESPONDENT; OAKLAND HARBOR PARTNERS ET AL., REAL PARTIES IN INTEREST AND RESPONDENTS.



Trial Court: Superior Court of Alameda County Trial Judge: Honorable Jo-Lynne Q. Lee (Alameda County Super. Ct. No. RG06280345)

The opinion of the court was delivered by: Rivera, J.

CERTIFIED FOR PUBLICATION

Oakland Harbor Partners, LLC, Signature Properties, Inc., and Reynolds & Brown (collectively Real Parties) are the proponents of a project proposed to be built along Oakland's estuary. The City of Oakland (the City) certified an environmental impact report (EIR) for the project. Oakland Heritage Alliance (the Alliance) challenged this action, and the trial court granted its petition for writ of mandate, finding, among other things, that the EIR's discussion of the project's seismic risks was inadequate. The City revised the EIR and certified it as revised. The trial court then discharged the writ.

The Alliance challenges this action on appeal, contending the City's treatment of seismic impacts did not meet the requirements of the California Environmental Quality Act (CEQA), (Pub. Resources Code,*fn1 § 21000 et seq.). We shall affirm the order discharging the writ.

I. BACKGROUND

Real Parties proposed a project to develop approximately 64 acres along the Oakland Estuary and the Embarcadero, converting a maritime and industrial area into residential, retail/commercial, open space, and marina uses (the "project" or the "Oak to Ninth Project"). Building heights would range from six to 24 stories.

In its discussion of seismicity, the EIR noted that the project site was approximately three and one-half miles from the Hayward Fault Zone and 15 and one-half miles from the San Andreas Fault Zone, both active fault zones capable of generating major earthquakes, and that other faults were also capable of producing significant ground shaking at the project site. The EIR identified various seismic hazards; of particular relevance here were the potential for strong ground shaking and liquefaction.

In its discussion of ground shaking, the EIR noted that the 1906 San Francisco earthquake, produced by the San Andreas Fault Zone, had an estimated magnitude of 7.9 and produced strong to violent shaking intensities, and that the 1989 Loma Prieta earthquake, generated by the same fault zone, produced strong shaking intensities. The EIR described the Modified Mercalli (MM) Intensity Scale for the intensity of earthquakes. The highest intensity value is MM-XII. An event with an intensity value of MM-X is described thus: "Some well-built wooden structures destroyed; most masonry and frame structures destroyed with foundations; ground badly cracked. Rails bent. Landslides considerable from riverbanks and steep slopes. Shifted sand and mud. Water splashed (slopped) over banks." In an earthquake with an intensity value of MM-IX, damage in specially designed structures would be "considerable," and it would be "great" in "substantial buildings, with partial collapse"; well-designed frame structures would be thrown out of plumb; and buildings would be shifted off foundations. At a level of MM-VIII, damage to specially designed structures would be slight, and to "ordinary substantial buildings" would be "considerable." At level MM-VII, damage in buildings of good design and construction would be "negligible," and in "well-built ordinary structures" would be slight to moderate.*fn2 The intensity of the 1906 San Francisco earthquake was level VIII to IX; that of the 1989 Loma Prieta earthquake was level VIII. The EIR noted that the presence of artificial fill and bay mud in the project area could intensify the effects of ground shaking during an earthquake.

Liquefaction occurs when saturated soil is transformed from a solid to a liquefied state, particularly as the result of an earthquake. Ground failure caused by liquefaction can damage roads, pipelines, underground cables, and buildings with shallow foundations. The project site is located within a Seismic Hazard Zone for liquefaction, as designated by the California Geological Survey (CGS).

The EIR identified several seismic impacts of the project. The two at issue here are impacts F.1 and F.2. The EIR described impact F.1 in this manner: "In the event of a major earthquake in the region, seismic ground shaking could potentially injure people and cause collapse or structural damage to proposed structures." This impact was designated as "[p]otentially [s]ignificant." The EIR's discussion of this impact noted that an earthquake in the Bay Area could produce ground accelerations at the project site ranging from strong (MM-VII) to very violent intensity (MM-X), with a possible intensity of MM-X as a result of a 7.1 earthquake on the Hayward fault. Such an earthquake "would cause considerable structural damage, even in well-designed structures." Based on a master plan-level geotechnical investigation, the EIR recommended as a mitigation measure: "A site-specific, design level geotechnical investigation for each site area (which is typical for any large development project) shall be required as part of this project. Each investigation shall include an analysis of expected ground motions at the site from known active faults. The analyses shall be in accordance with applicable City ordinances and policies and consistent with the most recent version of the California Building Code, which requires structural design that can accommodate ground accelerations expected from known active faults. In addition, the investigations shall determine final design parameters for the walls, foundations, foundation slabs, and surrounding related improvements (utilities, roadways, parking lots and sidewalks). The investigations shall be reviewed and approved by a registered geotechnical engineer. All recommendations by the project engineer and geotechnical engineer shall be included in the final design. Recommendations that are applicable to foundation design, earthwork, and site preparation that were prepared prior to or during the project design phase, shall be incorporated in the project. The final seismic considerations for the site shall be submitted to and approved of by the City of Oakland Building Services Division prior to the commencement of the project." After mitigation, the EIR concluded this impact would be less than significant.

The EIR also identified Impact F.2: "In the event of a major earthquake in the region, seismic ground shaking could potentially expose people and property to liquefaction and earthquake-induced settlement." This impact was likewise considered potentially significant. According to the EIR, the geotechnical investigation had identified a potential for liquefaction at the site and had recommended specific foundation types and pile specifications to mitigate the adverse effects of liquefaction. The EIR recommended the following mitigation measure: "Prepare an updated site specific, design level geotechnical investigation for each building site to consider the particular project designs and provide site specific engineering recommendations for mitigation of liquefiable soils. Liquefiable soils under the conditions described in the geotechnical report shall be mitigated using various proven methods to reduce the risk of liquefaction. Liquefaction mitigation measures include subsurface soil improvement, deep foundations, structural slabs, and soil cover. Site improvement methods to address potential liquefaction include dynamic compaction, compaction grouting, jet grouting, and vibroflotation can [sic] significantly reduce the risk of liquefaction. Deep foundations extending below the liquefiable layers can be designed to support structures despite the occurrence of liquefaction. Structural slabs are designed to span across areas of non-support, such as in the case of liquefaction or settlement. The presence of a sufficiently thick, engineered fill layer over liquefiable soil can reduce the potential for damage at the ground surface due to liquefaction by helping to bridge across isolated liquefaction zones. Other methods of mitigating potential liquefaction hazards suggested in the California Geological Survey's (CGS) Geology Guidelines for Evaluating and Mitigating Seismic Hazards (CGS Special Publication 117, 1997) include edge containment structures (berms, dikes[,] sea walls, retaining structures, compacted soil zones), removal or treatment of liquefiable soils, modification of site geometry, lowering the groundwater table, in-situ ground densification, deep foundations, reinforced shallow foundations, and structural design that can accommodate predicted displacements [citation]. [¶] These measures shall be evaluated during the site specific geotechnical investigation and the most effective, practical and economical methods should become part of the project. Prior to incorporation into the project, geotechnical engineering recommendations regarding the mitigation and reduction of liquefaction for each site shall be reviewed for compliance with the CGS Geology Guidelines. The purpose of these guidelines is to protect the public safety from seismic effects such as liquefaction." With this mitigation measure, the EIR concluded the impact of liquefaction would be less than significant.

The City certified the EIR, adopted mitigation measures F.1 and F.2, and, with modifications not relevant here, approved the project.

The Alliance filed a petition for writ of mandate alleging numerous violations of CEQA. Among them, the Alliance alleged the City had violated CEQA by certifying the EIR and adopting CEQA findings although the mitigation measures would not reduce the effects of ground shaking, liquefaction, and earthquake-induced settlement to a less than significant level.

The trial court granted in part and denied in part the petition for writ of mandate. On the seismic risk findings, the court found the EIR contained no meaningful analysis to support the findings that the risks of ground shaking and liquefaction would be reduced to a less than significant level, and the findings were not supported by substantial evidence in the record. According to the trial court, neither the impact statements nor the mitigation measures established which mitigation techniques would actually be used and how they would reduce the impacts of a major earthquake. Mitigation measure F.1 stated that the analysis for expected ground motions would be consistent with the California Building Code (Building Code), but did not require that the measures finally approved would meet or exceed the structural design requirements set forth in the Building Code. Measure F.2 did not require that the final design and engineering specifications for the buildings would meet a particular standard or that any of the methodologies mentioned in the mitigation measure to reduce liquefaction impacts would be used at the site; nor was there an analysis of how the mitigation measure would reduce the impact to a less than significant level. The court concluded that the geotechnical report, which had been prepared by Treadwell & Rollo, did not provide the necessary analysis to allow the City to conclude that the mitigation measures would reduce the effects of a major earthquake to a less than significant level. Moreover, the court stated, "the measure [did] not commit the City to implementing any particular building technique, to follow any specified standard (other than Building Code requirements), or incorporate the recommendations made by Treadwell & Rollo." The trial court directed the City to void its certification of the EIR, CEQA findings and statement of overriding considerations, and the approval of the project, and remanded the matter to the City.

In response to the trial court's order, the City revised the EIR.*fn3 Like the earlier version of the EIR, the Revised EIR stated that under CEQA, a project would have a significant seismic effect if it would: "Expose people or structures to geologic hazards, soils, and/or seismic conditions so unfavorable that they could not be overcome by special design using reasonable construction and maintenance practices. Specifically, [¶] Expose people or structures to substantial risk of loss, injury, or death involving: [¶] - Rupture of a known earthquake fault . . . ; [¶] - Strong seismic ground shaking; [¶] - Seismic-related ground failure, including liquefaction, lateral spreading, subsidence, collapse; or [¶] - Landsides[.]" According to the Revised EIR, "[t]he significance criteria do not require elimination of the potential for structural damage from seismic hazards. Instead, the criteria require an evaluation of whether the seismic conditions on a site can be overcome through engineering design solutions that will reduce to less than significant the substantial risk of exposing people or structures to loss, injury or death. State and local code requirements ensure buildings are designed and constructed in a manner that, although the buildings may sustain damage during a major earthquake, will reduce the substantial risk that buildings will collapse resulting in a potential for injury or death. As discussed below, the potentially significant seismic impacts on the Oak to Ninth project site could be reduced to less than significant through conformance to existing state laws, City ordinances, and application of accepted, proven construction engineering practices."

The Revised EIR included an extensive discussion of the mandates of various state and City laws bearing upon seismic safety, including the Seismic Hazards Mapping Act (§ 2690 et seq.), the Building Code (which is found in title 24 of the California Code of Regulations), and various City ordinances.

The Revised EIR explained that for certain large projects, like the proposed Oak to Ninth Project, the applicant conducts a preliminary or " 'Master Plan' " geotechnical investigation to determine overall engineering feasibility and to inform the preliminary designs. At this stage, geotechnical engineers "acquire a broad understanding of the site conditions while delimiting areas on the site that are especially favorable for development or could be problematic from a soils engineering perspective." This level of investigation is not sufficient to generate the " 'design-level' " data needed to make final grading or structural designs. The Revised EIR explained that it was not effective to conduct a design-level investigation at this stage because the project could change considerably during environmental review. However, according to the Revised EIR, this type of preliminary geotechnical study in most cases provides enough detail to evaluate whether geologic or seismic impacts exist and whether mitigation would be necessary. The geotechnical investigation discussed in the Revised EIR is not a final site-specific, design-level study, but rather "determine[d] project feasibility in light of the site geotechnical conditions and identifie[d] areas of development opportunity and areas of development constraint."

The Revisions revised mitigation measures F.1 and F.2. As revised, measure F.1, for seismic ground shaking, provided that before the issuance of a building permit for any portion of the project site, the project sponsor "shall" submit a "site-specific, design level geotechnical investigation" for each parcel, which would comply with all applicable state and local code requirements, and "a) Include an analysis of the expected ground motions at the site from known active faults using accepted methodologies; [¶] b) Determine structural design requirements as prescribed by the most current version of the California Building Code, including applicable City amendments, to ensure that structures can withstand ground accelerations expected from known active faults; [¶] c) Determine the final design parameters for walls, foundations, foundation slabs, utilities, roadways, parking lots, sidewalks, and other surrounding related improvements." The measure required project plans for foundation design, earthwork, and site preparation to incorporate all of the mitigations in the site-specific investigations. In addition, the project structural engineer must "review the site specific investigations, provide any additional necessary mitigation to meet Building Code requirements, and incorporate all applicable mitigations from the investigation in[to] the structural design plans and shall ensure that all structural plans for the project meet current Building Code requirements." Additionally, a registered geotechnical engineer must "review each site-specific geotechnical investigation, approve the final report, and require compliance with all geotechnical mitigations contained in the investigation in the plans submitted for the grading, foundation, structural, infrastructure and all other relevant construction permits." Finally, the City Building Services Division "shall review all project plans" for the relevant permits "to ensure compliance with the applicable geotechnical investigation and other applicable Code requirements." With this mitigation, the Revised EIR concluded the impact of seismic ground shaking would be reduced to a less than significant level.

Revised mitigation measure F.2, for liquefaction and earthquake-induced settlement, likewise required the project sponsor to submit a site-specific, design-level geotechnical investigation, which would comply with all applicable state and local code requirements. The investigation would also: "a) Provide site specific engineering requirements for mitigation of liquefiable soils; [¶] b) Specify liquefaction mitigations that shall use proven methods, generally accepted by registered engineers, to reduce the risk of liquefaction to a less than significant level such as: [¶] - subsurface soil improvement, [¶] - deep foundations extending below the liquefiable layers, [¶] -structural slabs designed to span across areas of non-support, [¶] - soil cover sufficiently thick over liquefaction soil to bridge liquefaction zones, [¶] - dynamic compaction, [¶] -compaction grouting, [¶] - jet grouting, [and] [¶] - mitigation for liquefaction hazards suggested in the [CGS] Guidelines for Evaluating and Mitigating Seismic Hazards (CGS Special Publication 117, 1997), including edge containment structures (berms, dikes, sea walls, retaining structures, compacted soil zones), removal or treatment of liquefiable soils, modification of site geometry, lowering the groundwater table, in-situ ground densification, deep foundations, reinforced shallow foundations, and structural design that can withstand predicted displacements." This measure also required the geotechnical investigation to evaluate these mitigations and identify the most effective and practicable mitigation methods for inclusion in the project plans and to have the identified mitigations reviewed to ensure compliance with CGS Geology Guidelines related to protection of public safety from liquefaction; that project plans for foundation design, earthwork, and site preparation incorporate all mitigations in the site-specific investigations; that the project structural engineer review the site-specific investigations, provide any additional mitigation necessary to meet Building Code requirements, incorporate all applicable mitigations from the investigations in the structural design plans, and ensure that all structural plans meet current Building Code requirements; that the City's registered geotechnical engineer review each site-specific geotechnical investigation, approve the final report, and require that the plans for grading, foundation, structural, infrastructure, and other relevant construction permits comply with all geotechnical mitigations contained in the investigation; and that the City Building Services Division review all project plans for grading, foundations, structural, infrastructure, and all other relevant construction permits to ensure compliance with the applicable requirements of the geotechnical investigation, as well as other applicable code requirements. After this mitigation, the Revised EIR concluded that the impact of liquefaction and earthquake-induced settlement would be less than significant.

The Alliance submitted a comment letter taking the position that revised mitigation measures F.1 and F.2 failed to reduce seismic impacts to a less than significant level. In particular, the Alliance argued that building codes provide for a " 'life safety' " performance standard, under which building occupants would not be crushed by a collapse of a building in even a severe earthquake, but that buildings might be rendered uninhabitable. According to the Alliance, higher performance standards are already mandated in California for schools, hospitals, police, and ...


Buy This Entire Record For $7.95

Download the entire decision to receive the complete text, official citation,
docket number, dissents and concurrences, and footnotes for this case.

Learn more about what you receive with purchase of this case.